Building biological computers

Building biological computers
Genetically modified cells can be made to communicate with each other as if they were electronic circuits. Using yeast cells, a group of researchers in Gothenburg has taken a groundbreaking step towards being able to build complex systems in the future where the body’s own cells help to keep us healthy. The study was presented recently in an article in the scientific journal Nature. Credit: University of Gothenburg

New research shows that genetically modified cells can be made to communicate with each other as if they were electronic circuits. The study is a groundbreaking step toward building complex systems where the body's own cells can help to keep us healthy.

Genetically modified cells can be made to communicate with each other as if they were . Using , a group of researchers at the University of Gothenburg, Sweden, has taken a groundbreaking step towards being able to build in the future where the body's own cells help to keep us healthy. The study was presented recently in an article in the scientific journal Nature.

"Even though engineered cells can't do the same job as a real computer, our study paves the way for building complex constructions from these cells," says Kentaro Furukawa at the University of Gothenburg's Department of Cell- and Molecular Biology, one of the researchers behind the study. "In the future we expect that it will be possible to use similar cell-to-cell communication systems in the human body to detect changes in the state of health, to help fight illness at an early stage, or to act as to detect pollutants in connection with our ability to break down toxic substances in the environment."

Combining biology and technology

Synthetic biology is a relatively new area of research. One application is the design of that are not found in nature. For example, researchers have successfully constructed a number of different artificial connections within genetically modified cells, such as circuit breakers, oscillators and sensors.

Some of these artificial networks could be used for industrial or medical applications. Despite the huge potential for these artificial connections, there have been many technical limitations to date, mainly because the artificial systems in individual cells rarely work as expected, which has a major impact on the results.

Biotechnology challenges the world of computers

Using yeast cells, the research team at the University of Gothenburg has now produced synthetic circuits based on gene-regulated communication between cells. The yeast cells have been modified genetically so that they sense their surroundings on the basis of set criteria and then send signals to other yeast cells by secreting molecules. The various cells can thus be combined like bricks of Lego to produce more complicated circuits. Using a construction of yeast cells with different genetic modifications, it is possible to carry out more complicated "electronic" functions than would be the case with just one type of cells.

Provided by Astrobio.net

Citation: Building biological computers (2011, March 7) retrieved 29 March 2024 from https://phys.org/news/2011-03-biological.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Researchers open the door to biological computers

0 shares

Feedback to editors