New analysis technique for chiral activity in molecules

New analysis technique for chiral activity in molecules
Separations of NMR Signals of Chemicals due to Interaction with Metal Compounds. Credit: Korea Advanced Institute of Science and Technology

Researchers in Korea have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance spectroscopy.

Professor Hyunwoo Kim of the Chemistry Department at Korea Advanced Institute of Science and Technology (KAIST) and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using (NMR) . The research finding entitled "H NMR Chiral Analysis of Charged Molecules via Ion Pairing with Aluminum Complexes" was published online in the October 19th issue of The Journal of the American Chemical Society.

The technique relies on observation of the behavior of optical isomers. Molecules with the same composition that are mirror images of each other are optical isomers. For example, the building blocks of all living organisms, amino acids, are a single optical isomer. In our bodies, optical isomers bring different physiological changes due to their distinct optical activities. Therefore, controlling and analyzing the optical activities are critical when developing a new drug.

High-performance liquid chromatography (HPLC) is the de facto standard of analyzing the optical activity of a compound. However, HPLC is very expensive that many laboratories can't afford to have. In addition, with the machine, one analysis may take 30 minutes to one hour to complete. It lacks in signal sensitivity and chemical decomposition, and the application is limited to nonpolar compounds.

Usually adopted in analyzing the structure of a chemical compound, NMR spectroscopy requires only one to five minutes per single analysis. Since it is essential for analyzing the molecular structure, many chemistry labs have NMR equipment. However, until this technique was invented, no other research team had reported an effective way of using the NMR spectroscopy to decompose the signal of chiral activity of a compound.

The research team uses negatively-charged metal compounds in NMR spectroscopy. The technique employs negatively-charged metal compounds which bond ionically to positively- and negatively-charged optical compounds. As a result, the NMR spectroscopy can distinguish the signal from chiral activity. Not only can it analyze various chemicals without structural constraints, but it can also be used for both nonpolar and polar solvents.

As many for new drugs have functional groups, which can be charged, this analysis method can be directly employed in the development process of drugs. Professor Kim said, "A revolutionary analysis method has been developed using simple chemical principles. I hope that our method will be applied to the development of new medicine."

More information: Min-Seob Seo et al. H NMR Chiral Analysis of Charged Molecules via Ion Pairing with Aluminum Complexes , Journal of the American Chemical Society (2015). DOI: 10.1021/jacs.5b09555

Citation: New analysis technique for chiral activity in molecules (2015, November 23) retrieved 28 March 2024 from https://phys.org/news/2015-11-analysis-technique-chiral-molecules.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Structure and configuration of Jurassic pigments reveal unique naturally-occurring boron metabolites

7 shares

Feedback to editors